Supplementary Material for Human-centric Indoor Scene Synthesis Using Stochastic Grammar

نویسندگان

  • Siyuan Qi
  • Yixin Zhu
  • Siyuan Huang
  • Chenfanfu Jiang
  • Song-Chun Zhu
چکیده

Depth estimation Single-image depth estimation is a fundamental problem in computer vision, which has found broad applications in scene understanding, 3D modeling, and robotics. The problem is challenging since no reliable depth cues are available. In this task, the algorithms output a depth image based on a single RGB input image. To demonstrate the efficacy of our synthetic data, we compare the depth estimation results provided by models trained following protocols similar to those we used in normal prediction with the network in [6]. To perform a quantitative evaluation, we used the metrics applied in previous work [3]: • Abs relative error: 1 N ∑

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human-centric Indoor Scene Synthesis Using Stochastic Grammar

We present a human-centric method to sample and synthesize 3D room layouts and 2D images thereof, to obtain large-scale 2D/3D image data with the perfect per-pixel ground truth. An attributed spatial And-Or graph (S-AOG) is proposed to represent indoor scenes. The S-AOG is a probabilistic grammar model, in which the terminal nodes are object entities including room, furniture, and supported obj...

متن کامل

Configurable, Photorealistic Image Rendering and Ground Truth Synthesis by Sampling Stochastic Grammars Representing Indoor Scenes

We propose the configurable rendering of massive quantities of photorealistic images with ground truth for the purposes of training, benchmarking, and diagnosing computer vision models. In contrast to the conventional (crowdsourced) manual labeling of ground truth for a relatively modest number of RGB-D images captured by Kinect-like sensors, we devise a non-trivial configurable pipeline of alg...

متن کامل

Integrating Function, Geometry, Appearance for Scene Parsing

In this paper, we present a Stochastic Scene Grammar (SSG) for parsing 2D indoor images into 3D scene layouts. Our grammar model integrates object functionality, 3D object geometry, and their 2D image appearance in a Function-Geometry-Appearance (FGA) hierarchy. In contrast to the prevailing approach in the literature which recognizes scenes and detects objects through appearance-based classifi...

متن کامل

Human Centered Scene Understanding Based on 3D Long-Term Tracking Data

Scene understanding approaches are mainly based on geometric information, not considering the behavior of humans. The proposed approach introduces a novel human-centric scene understanding approach, based on long-term tracking information. Long-term tracking information is filtered, clustered and areas offering meaningful functionalities for humans are modeled using a kernel density estimation....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018